\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{x^5 (d+e x)} \, dx\) [465]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 404 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=-\frac {\left (2 a d e \left (5 c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )+\left (5 c^3 d^6+83 a c^2 d^4 e^2+11 a^2 c d^2 e^4-3 a^3 e^6\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 a d^2 e x^2}-\frac {\left (6 a d e+\left (11 c d^2+3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 d x^4}+c^{5/2} d^{5/2} e^{3/2} \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\frac {\left (5 c^4 d^8-60 a c^3 d^6 e^2-90 a^2 c^2 d^4 e^4+20 a^3 c d^2 e^6-3 a^4 e^8\right ) \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 a^{3/2} d^{5/2} e^{3/2}} \]

[Out]

-1/24*(6*a*d*e+(3*a*e^2+11*c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/d/x^4+1/128*(-3*a^4*e^8+20*a^3*c*
d^2*e^6-90*a^2*c^2*d^4*e^4-60*a*c^3*d^6*e^2+5*c^4*d^8)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e
^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/a^(3/2)/d^(5/2)/e^(3/2)+c^(5/2)*d^(5/2)*e^(3/2)*arctanh(1/2*(2
*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))-1/64*(2*a*d*e*(-a*e^2+5
*c*d^2)*(3*a*e^2+c*d^2)+(-3*a^3*e^6+11*a^2*c*d^2*e^4+83*a*c^2*d^4*e^2+5*c^3*d^6)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d
*e*x^2)^(1/2)/a/d^2/e/x^2

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 404, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {863, 824, 857, 635, 212, 738} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=-\frac {\left (x \left (-3 a^3 e^6+11 a^2 c d^2 e^4+83 a c^2 d^4 e^2+5 c^3 d^6\right )+2 a d e \left (5 c d^2-a e^2\right ) \left (3 a e^2+c d^2\right )\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{64 a d^2 e x^2}+\frac {\left (-3 a^4 e^8+20 a^3 c d^2 e^6-90 a^2 c^2 d^4 e^4-60 a c^3 d^6 e^2+5 c^4 d^8\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{128 a^{3/2} d^{5/2} e^{3/2}}+c^{5/2} d^{5/2} e^{3/2} \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )-\frac {\left (x \left (3 a e^2+11 c d^2\right )+6 a d e\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{24 d x^4} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x^5*(d + e*x)),x]

[Out]

-1/64*((2*a*d*e*(5*c*d^2 - a*e^2)*(c*d^2 + 3*a*e^2) + (5*c^3*d^6 + 83*a*c^2*d^4*e^2 + 11*a^2*c*d^2*e^4 - 3*a^3
*e^6)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(a*d^2*e*x^2) - ((6*a*d*e + (11*c*d^2 + 3*a*e^2)*x)*(a*d
*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(24*d*x^4) + c^(5/2)*d^(5/2)*e^(3/2)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d
*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])] + ((5*c^4*d^8 - 60*a*c^3*d^6*e^
2 - 90*a^2*c^2*d^4*e^4 + 20*a^3*c*d^2*e^6 - 3*a^4*e^8)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d
]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(128*a^(3/2)*d^(5/2)*e^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 824

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m + 1))*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)))*((d*g - e*f*(m + 2)
)*(c*d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 - b*d*e + a*e^2) + p*(2*c*d -
b*e)*(e*f - d*g))*x), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*
x + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + p + 2)) + b*(a*e^2*g*(m +
1) - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m +
 1) - b*(d*g*(m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*
a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3,
0]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a e+c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^5} \, dx \\ & = -\frac {\left (6 a d e+\left (11 c d^2+3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 d x^4}-\frac {\int \frac {\left (-\frac {1}{2} a e \left (5 c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )-8 a c^2 d^3 e^2 x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3} \, dx}{8 a d e} \\ & = -\frac {\left (2 a d e \left (5 c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )+\left (5 c^3 d^6+83 a c^2 d^4 e^2+11 a^2 c d^2 e^4-3 a^3 e^6\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 a d^2 e x^2}-\frac {\left (6 a d e+\left (11 c d^2+3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 d x^4}+\frac {\int \frac {-\frac {1}{4} a e \left (5 c^4 d^8-60 a c^3 d^6 e^2-90 a^2 c^2 d^4 e^4+20 a^3 c d^2 e^6-3 a^4 e^8\right )+32 a^2 c^3 d^5 e^4 x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{32 a^2 d^2 e^2} \\ & = -\frac {\left (2 a d e \left (5 c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )+\left (5 c^3 d^6+83 a c^2 d^4 e^2+11 a^2 c d^2 e^4-3 a^3 e^6\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 a d^2 e x^2}-\frac {\left (6 a d e+\left (11 c d^2+3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 d x^4}+\left (c^3 d^3 e^2\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx-\frac {\left (5 c^4 d^8-60 a c^3 d^6 e^2-90 a^2 c^2 d^4 e^4+20 a^3 c d^2 e^6-3 a^4 e^8\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{128 a d^2 e} \\ & = -\frac {\left (2 a d e \left (5 c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )+\left (5 c^3 d^6+83 a c^2 d^4 e^2+11 a^2 c d^2 e^4-3 a^3 e^6\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 a d^2 e x^2}-\frac {\left (6 a d e+\left (11 c d^2+3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 d x^4}+\left (2 c^3 d^3 e^2\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\frac {\left (5 c^4 d^8-60 a c^3 d^6 e^2-90 a^2 c^2 d^4 e^4+20 a^3 c d^2 e^6-3 a^4 e^8\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{64 a d^2 e} \\ & = -\frac {\left (2 a d e \left (5 c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )+\left (5 c^3 d^6+83 a c^2 d^4 e^2+11 a^2 c d^2 e^4-3 a^3 e^6\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{64 a d^2 e x^2}-\frac {\left (6 a d e+\left (11 c d^2+3 a e^2\right ) x\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{24 d x^4}+c^{5/2} d^{5/2} e^{3/2} \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\frac {\left (5 c^4 d^8-60 a c^3 d^6 e^2-90 a^2 c^2 d^4 e^4+20 a^3 c d^2 e^6-3 a^4 e^8\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{128 a^{3/2} d^{5/2} e^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.04 (sec) , antiderivative size = 358, normalized size of antiderivative = 0.89 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (-\sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a e+c d x} \sqrt {d+e x} \left (15 c^3 d^6 x^3+a c^2 d^4 e x^2 (118 d+337 e x)+a^2 c d^2 e^2 x \left (136 d^2+244 d e x+57 e^2 x^2\right )+3 a^3 e^3 \left (16 d^3+24 d^2 e x+2 d e^2 x^2-3 e^3 x^3\right )\right )+3 \left (5 c^4 d^8-60 a c^3 d^6 e^2-90 a^2 c^2 d^4 e^4+20 a^3 c d^2 e^6-3 a^4 e^8\right ) x^4 \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )+384 a^{3/2} c^{5/2} d^5 e^3 x^4 \text {arctanh}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c} \sqrt {d} \sqrt {d+e x}}\right )\right )}{192 a^{3/2} d^{5/2} e^{3/2} x^4 \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x^5*(d + e*x)),x]

[Out]

(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(-(Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(15*c^3*d^6*x^3 +
a*c^2*d^4*e*x^2*(118*d + 337*e*x) + a^2*c*d^2*e^2*x*(136*d^2 + 244*d*e*x + 57*e^2*x^2) + 3*a^3*e^3*(16*d^3 + 2
4*d^2*e*x + 2*d*e^2*x^2 - 3*e^3*x^3))) + 3*(5*c^4*d^8 - 60*a*c^3*d^6*e^2 - 90*a^2*c^2*d^4*e^4 + 20*a^3*c*d^2*e
^6 - 3*a^4*e^8)*x^4*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])] + 384*a^(3/2)*c^(5/2)
*d^5*e^3*x^4*ArcTanh[(Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])]))/(192*a^(3/2)*d^(5/2)*e^(3/
2)*x^4*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(11684\) vs. \(2(362)=724\).

Time = 1.20 (sec) , antiderivative size = 11685, normalized size of antiderivative = 28.92

method result size
default \(\text {Expression too large to display}\) \(11685\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^5/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [A] (verification not implemented)

none

Time = 16.14 (sec) , antiderivative size = 1917, normalized size of antiderivative = 4.75 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\text {Too large to display} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^5/(e*x+d),x, algorithm="fricas")

[Out]

[1/768*(384*sqrt(c*d*e)*a^2*c^2*d^5*e^3*x^4*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x)
 - 3*(5*c^4*d^8 - 60*a*c^3*d^6*e^2 - 90*a^2*c^2*d^4*e^4 + 20*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(a*d*e)*x^4*log((8
*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*
e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) - 4*(48*a^4*d^4*e^4 + (15*a*c^3*d^7*e +
 337*a^2*c^2*d^5*e^3 + 57*a^3*c*d^3*e^5 - 9*a^4*d*e^7)*x^3 + 2*(59*a^2*c^2*d^6*e^2 + 122*a^3*c*d^4*e^4 + 3*a^4
*d^2*e^6)*x^2 + 8*(17*a^3*c*d^5*e^3 + 9*a^4*d^3*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^2*d^3*
e^2*x^4), -1/768*(768*sqrt(-c*d*e)*a^2*c^2*d^5*e^3*x^4*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*
(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 3*(5*c
^4*d^8 - 60*a*c^3*d^6*e^2 - 90*a^2*c^2*d^4*e^4 + 20*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(a*d*e)*x^4*log((8*a^2*d^2*
e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^
2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(48*a^4*d^4*e^4 + (15*a*c^3*d^7*e + 337*a^2*
c^2*d^5*e^3 + 57*a^3*c*d^3*e^5 - 9*a^4*d*e^7)*x^3 + 2*(59*a^2*c^2*d^6*e^2 + 122*a^3*c*d^4*e^4 + 3*a^4*d^2*e^6)
*x^2 + 8*(17*a^3*c*d^5*e^3 + 9*a^4*d^3*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^4),
 1/384*(192*sqrt(c*d*e)*a^2*c^2*d^5*e^3*x^4*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*sqrt
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x)
 - 3*(5*c^4*d^8 - 60*a*c^3*d^6*e^2 - 90*a^2*c^2*d^4*e^4 + 20*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(-a*d*e)*x^4*arcta
n(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2
+ a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e^3)*x)) - 2*(48*a^4*d^4*e^4 + (15*a*c^3*d^7*e + 337*a^2*c^2*d^5*e^3 + 57*a
^3*c*d^3*e^5 - 9*a^4*d*e^7)*x^3 + 2*(59*a^2*c^2*d^6*e^2 + 122*a^3*c*d^4*e^4 + 3*a^4*d^2*e^6)*x^2 + 8*(17*a^3*c
*d^5*e^3 + 9*a^4*d^3*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^4), -1/384*(384*sqrt(
-c*d*e)*a^2*c^2*d^5*e^3*x^4*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)
*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x)) + 3*(5*c^4*d^8 - 60*a*c^3*d^6*e^2 -
 90*a^2*c^2*d^4*e^4 + 20*a^3*c*d^2*e^6 - 3*a^4*e^8)*sqrt(-a*d*e)*x^4*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^
2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2 + (a*c*d^3*e + a^2*d*e
^3)*x)) + 2*(48*a^4*d^4*e^4 + (15*a*c^3*d^7*e + 337*a^2*c^2*d^5*e^3 + 57*a^3*c*d^3*e^5 - 9*a^4*d*e^7)*x^3 + 2*
(59*a^2*c^2*d^6*e^2 + 122*a^3*c*d^4*e^4 + 3*a^4*d^2*e^6)*x^2 + 8*(17*a^3*c*d^5*e^3 + 9*a^4*d^3*e^5)*x)*sqrt(c*
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^4)]

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\text {Timed out} \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/x**5/(e*x+d),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}}}{{\left (e x + d\right )} x^{5}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^5/(e*x+d),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)*x^5), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1750 vs. \(2 (362) = 724\).

Time = 0.68 (sec) , antiderivative size = 1750, normalized size of antiderivative = 4.33 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\text {Too large to display} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^5/(e*x+d),x, algorithm="giac")

[Out]

-c^3*d^3*e^2*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*
e))))/sqrt(c*d*e) - 1/64*(5*c^4*d^8 - 60*a*c^3*d^6*e^2 - 90*a^2*c^2*d^4*e^4 + 20*a^3*c*d^2*e^6 - 3*a^4*e^8)*ar
ctan(-(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/(sqrt(-a*d*e)*a*d^2*e) + 1/1
92*(15*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^3*c^4*d^11*e^3 - 180*(sqrt(c*d*e)*x - s
qrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^4*c^3*d^9*e^5 + 114*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x +
a*e^2*x + a*d*e))*a^5*c^2*d^7*e^7 + 60*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^6*c*d^5
*e^9 - 9*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^7*d^3*e^11 - 512*sqrt(c*d*e)*a^5*c^2*
d^8*e^6 - 55*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^2*c^4*d^10*e^2 + 660*(sqrt(c*d*
e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^3*c^3*d^8*e^4 + 1374*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 +
 c*d^2*x + a*e^2*x + a*d*e))^3*a^4*c^2*d^6*e^6 + 548*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d
*e))^3*a^5*c*d^4*e^8 + 33*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^3*a^6*d^2*e^10 + 2048*
sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a^4*c^2*d^7*e^5 + 768*sqrt(c*d*e)*
(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a^5*c*d^5*e^7 + 73*(sqrt(c*d*e)*x - sqrt(c*d*e
*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*a*c^4*d^9*e + 276*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a
*d*e))^5*a^2*c^3*d^7*e^3 + 990*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*a^3*c^2*d^5*e^5
 + 676*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*a^4*c*d^3*e^7 + 33*(sqrt(c*d*e)*x - sqr
t(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^5*a^5*d*e^9 - 1152*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d
^2*x + a*e^2*x + a*d*e))^4*a^3*c^2*d^6*e^4 + 768*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2
*x + a*d*e))^4*a^4*c*d^4*e^6 + 384*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^4
*a^5*d^2*e^8 + 15*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^7*c^4*d^8 + 588*(sqrt(c*d*e)*x
 - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^7*a*c^3*d^6*e^2 + 882*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*
x + a*e^2*x + a*d*e))^7*a^2*c^2*d^4*e^4 + 60*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^7*a
^3*c*d^2*e^6 - 9*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^7*a^4*e^8 + 384*sqrt(c*d*e)*(sq
rt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^6*a*c^3*d^7*e + 2304*sqrt(c*d*e)*(sqrt(c*d*e)*x - s
qrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^6*a^2*c^2*d^5*e^3 + 1152*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x
^2 + c*d^2*x + a*e^2*x + a*d*e))^6*a^3*c*d^3*e^5)/((a*d*e - (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*
x + a*d*e))^2)^4*a*d^2*e)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^5 (d+e x)} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{x^5\,\left (d+e\,x\right )} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(x^5*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(x^5*(d + e*x)), x)